An excerpt from

The Graphviz Cookboo

Rod Waldhoff
rwaldhoff@gmail.com
http://heyrod.com/

ABOUT THIS BOOK

The Graphviz Cookbook, like a regular cookbook, is meant to be a practical guide that shows you how to create something
tangible and, hopefully, teaches you how to improvise your own creations using similar techniques.

The book is organized into four parts:

Part 1: Getting Started introduces the Graphviz tool suite and provides "quick start" instructions to help you get
up-and-running with Graphviz for the first time.

Part 2: Ingredients describes the elements of the Graphviz ecosystem in more detail, including an in-depth review of each
application in the Graphviz family.

Part 3: Techniques reviews several idioms or "patterns” that crop up often when working with Graphviz such as how to tweak a
graph's layout or add a "legend" to a graph. You might think of these as "micro-recipes" that are used again and again.

Part 4: Recipes contains detailed walk-throughs of how to accomplish specific tasks with Graphviz, such as how to spider a
web-site to generate a sitemap or how to generate UML diagrams from source files.

mailto:rwaldhoff@gmail.com
http://heyrod.com/

Chapter 10

Using gvpr to style graphs

The Cascading Style-Sheet language, CSS, provides a mechanism for “styling”
HTML documents. To style an HTML document using CSS, one associates
patterns (known as selectors) with style attributes. A CSS processor applies
the specified style to each element in the HTML document that matches the
associated pattern.

For example, the CSS rule:

[
‘p { border-left: 2px solid black; }
L

instructs the CSS processor to draw a two-pixel wide, solid, black border around
each paragraph (p) element. The rule:

‘.redtext { font-color: red; }
L |

instructs the CSS processor to render the text of any element with the class
redtext in red.

Using gvpr, Graphviz’s awk-like DOT file processor, we can do something quite
similar for graphs.

Like a CSS processor, gvpr can apply user-specified actions to elements that
match a given pattern. All we need to do is define a predicates that select the
nodes, edges or graphs we’re interested in and actions that apply the appropri-
ate style attributes.

For example, the gvpr program:

[
‘E [style=="dashed”] { color = "blue”; }
L

91

CHAPTER 10. USING GvPR TO STYLE GRAPHS 92

will select every edge with the dashed style and color it blue, and the gvpr
program:

[
‘N [shape=="box"”] { fontname = "Helvetica-Oblique”; fontsize=16; }
L

will select every node with the box shape and render its label in a 16-point
Helvetica-Oblique typeface. (See Figure 10.1 and Figure 10.2.)

Lorem
graph {
A [label="Lorem” shape="box"]
B [label="Ipsum”]
A--B
}
Ipsum

Figure 10.1: A graph before being styled by gvpr. (See Figure 10.2 for the “after” version.)

> cat mygraph.gv | gvpr -c
"N [shape=="box"] {
fontname="Helvetica-Oblique”; Lorem
fontsize=16; }”

graph {

A [fontname="Helvetica-Oblique”,
fontsize=16,
label=Lorem,
shape=box];
B [label=Ipsum];
A -- B;
}

Ipsum

Figure 10.2: A graph after being styled by gvpr. (See Figure 10.1 for the “before” version.)

10.1 More robust selectors
Be careful when applying this technique. Our selectors may not be quite as
clever as you imagine.

gvpr’s attribute-based patterns compare the given value to the full value of the
attribute. Hence:

[
| E [style="dashed"]
L

CHAPTER 10. USING GvPR TO STYLE GRAPHS 93

will match:

[]
‘A -- B [style="dashed”]

but not:

[]
|A -- B [style="bold,dashed"]
L |

One workaround is to enumerate all of the variations that you are interested
in.

Another approach is to fall back to a more “manual” form of filtering. For
instance:

E {
if(match($.style,"dashed”) != -1) {
color = "blue”;
}
}

Figure 10.3: A gvpr script containing a rule that matches all edges, but then relies on an
if statement to only a modify specific nodes.

The script in Figure 10.3 matches every edge in the input graph, but then uses
an if condition to determine whether or not the edge’s style attribute contains
the string dashed before applying the corresponding action.

10.2 Custom attributes

We can get even more CSS-like behavior by matching against custom attributes.
For instance, given the graph:

[
‘graph { A [class="fo0"] }
L

we might apply the gvpr script:

[
‘graph { N [class="foo"”] { shape="diamond”; }
L

to change the shape of each node with the specified class value.

